ОНТОГЕНЕЗ ПАЛЬЧАТОКОРЕННИКА ФУКСА В НЕРУССО-ДЕСНЯНСКОМ ПОЛЕСЬЕ

Γ . А. ЕКИМОВА¹, О. В. ЕКИМОВА²

то при станов природный биосферный заповедник «Брянский лес»

от токоренник Фукса (Dactylorhiza fuchsii (Druce) Soo) – растение от токоренник (Orchidaceae). Пальчатокоренник охраняется в Брянской области (Пальчатокоренник охраняется в Пальчатокоренник (Пальчатокоренник охраняется в Пальчатокоренник охраняется в Пальчатокоренник (Пальчатокоренник охраняется в Пальчатокоренник (Пальчатокоренник охраняется в Пальчатокоренник (Пальчатокоренник охраняется в Пальчатокоренник (Пальчатокоренник охранается в Пальчатокоренник охранается в Пальчатокоренник (Пальчатокоренник охранается в Пальчатокоренник охранается в Пальчатокоренник охранается в Пальчатокоренник (Пальчатокоренник охранается в Пальчатокоренник охранается в Пальчатокоре

тубероидами, каждый из которых разделен на несколько лотубероид функционирует в этом году, сморщенный, с надземным молодой, плотный, несет почку возобновления. В молодом

Район и методы исследования

песчаные аллювиально-зандровые и волнистые песчаноморено-зандровые равнины. Почвы дерново-подзолистые. Леса — 15%, пашня — 8%. Площадь — 2790 кв. км (Красная ..., 2004). Исроводились на территории ландшафтного заказника «Болото Ры-Алтуховского лесничества Навлинского лесхоза), в сосняке немо-

THE REAL PROPERTY.

выделялись на основе комплекса биологив и биометрических показателей. Эти показатели были промешение (таблица). Среди биологических анализировались следующие

Биометрические показатели онтогенетических состояний пальчатокоренника Фукса

Биометрические показатели	eijh Na la		Онтоген	Онтогенетические состояния	стояния		
promorton norman remain	j	im	V	gl	82	gs	S
Число измерений	–	10	10	8	6	2	1 80
1. Высота надземного побега, см	6,5-14,0	12,5-16,0	16,0-20,0	48,0-64,0	63,0-85,0	13,0-24,0	23.0
2. Глубина погружения подземной части, см	2,0-5,0	3,0-6,0	3,0-6,0		5,0-9,0	3,0-6,0	6.0
3. Длина соцветия, см				6,0-12,5	12,0-16,0	MOS	
4. Число цветков, шт				10-34	32-43	120	
5. Число ассимилирующих листьев, шт		2	ယ	3	4-5	2-3	ω
6. Длина второго ассимилирующего листа, см	6,0-13,5	10,5-15,0	13,0-18,5	10,0-15,5	14,0-16,0	10,5-15,0	16,0
7. Ширина второго ассимилирующего листа, см	0,6-2,0	1,2-2,3	1,6-3,0	2,3-3,5	2,5-4,5	1,8-2,3	3,0
8. Число жилок второго ассимилирующего листа, шт	2-4	3-5	3-6	5-7	7-9	4-5	S
9. Число зеленых ланцетных листочков на стеб-				ori orin áric	ing.	5 V	
ле, шт				2-5	1-4		. 115
10. Число чешуевидных низовых листьев, шт	2-3	2-3	2-3	2-3	2-3	2	2
11. Число придаточных корней, шт	1-4	2-4	2-5	4-8	6-10	4-9	S
12. Длина придаточного корня, см	1,5-5,5	2,5-6,0	3,5-8,5	5,5-13,5	8,5-12,5	2,5-3,7	6,0
13. Длина молодого тубероида, см	1,0-2,4	1,2-2,7	0,8-2,3	1,0-2,3	1,2-2,0	1,2-1,8	Texas
14. Ширина молодого тубероида, см	0,3-1,0	0,7-1,4	1,0-1,8	0,8-2,4	1,2-2,7	0,7-2,0	153
15. Длина старого тубероида, см	0,5-1,7	0,7-1,6	0,8-2,0	1,2-2,4	1,6-2,5	1,4-2,0	1,6
16. Ширина старого тубероида, см	0,2-0,7	0,3-0,8	0,6-1,6	0,8-2,0	1,4-3,0	1,8-2,3	1,2
17. Число лопастей молодого тубероида, шт	1-2	2-3	2-3	2-4	4-6	2	
	1-2	1-2	1-3	2-4	4-5	4-5	4

толой, старый) тубероида. Под типом листа понимались ювенильные, полувостые и взрослые листья. В число биометрических показателей входили: вызадземного побега, глубина погружения подземной части, длина соцветия и
ветков, число ассимилирующих листьев, длина, ширина и число жилок
пото листа, число зеленых ланцетных листочков на стебле, число чешуенизовых листьев, число придаточных корней и длина придаточного
толья длина и ширина молодого и старого тубероидов, число лопастей тубе-

Семена, проросток и продолжительность онтогенетических состояний в работе не изучены. Их описания взяты из литературы (Вахрамеева, 2000).

Содержание исследования

В результате исследования выявлены следующие онтогенетические со-

Семена (se) мелкие, распространяются ветром. Они практически лишены веществ и прорастают только при наличии грибов-

прорастании семян образуется **протокорм** (*p*). Он представляет соверхное бесцветное тело 2-5 мм длинной. Протокорм ведет подземный обв течение 2-3 лет. На 3-4 год растение переходит в ювенильное со-

В венильном (f) состоянии растение имеет побег с 2-3 коричневыми вешуевидными листьями и 1 фотосинтезирующим зеленым узколаныетом ювенильного типа (рис. 1). У наиболее развитых особей на стороне листа - фиолетово-коричневые пятна. Подземная часть образоми стеблекорневыми тубероидами: материнским (старым), серого цвета, молодым), белого цвета, несущим почку возобновления. У большений оба тубероида однолопастные, меньшая часть особей формитубероид с двумя лопастями. В основании побега формируется от тубероид. Глубина погружения тубероида до 5 см.

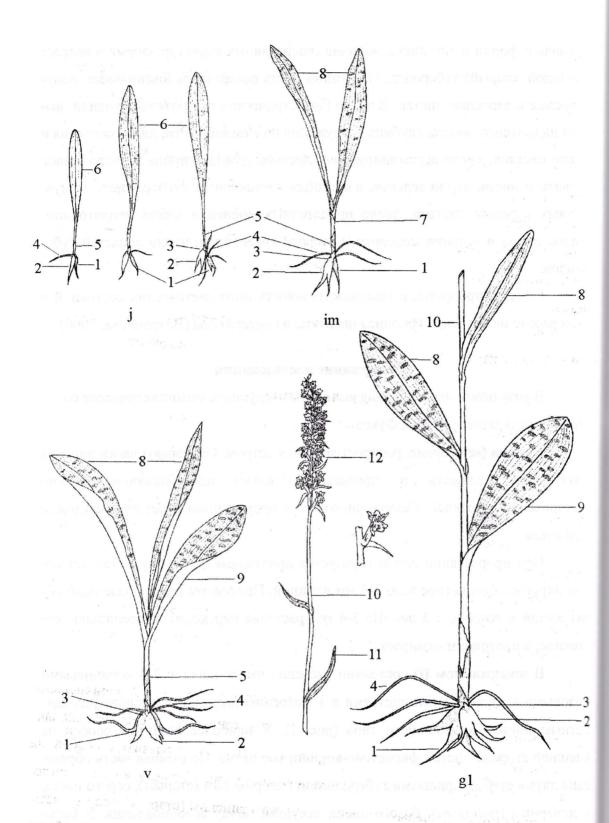
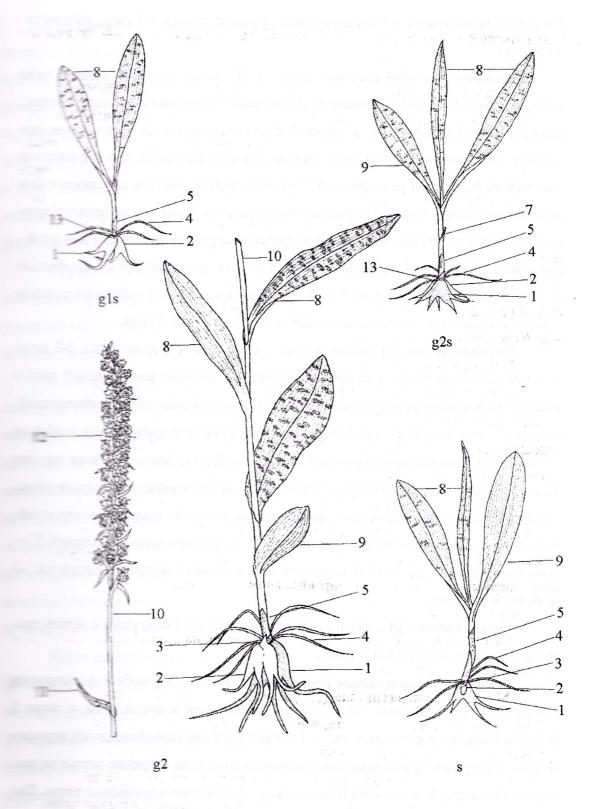



Рис. 1. Онтогенетические состояния пальчатокоренника Фукса. Обозначения: j - ювенильное, im - имматурное, v - виргинильное, g_1 - молодое генеративное; 1 - старый тубероид, 2 - молодой тубероид, 3 - почка возобновления, 4 - придаточные корни, 5 - чешуевидные листья, 6 - лист ювенильного типа, 7 - низовой влагалищный лист, 8 -листья полувзрослого типа, 9 - листья взрослого типа, 10 - цветонос, 11 - зеленый ланцетный листочек на цветоносе, 12 - соцветие.

тенетические состояния пальчатокоренника Фукса. Обозначения: g_{Is} скрытое генеративное, g_2 - средневозрастное генеративное, g_{2s} - средже скрытое генеративное, s - сенильное; 13 - базальная часть прошло-

Ювенильное состояние в благоприятных условиях длится 1-3 года, но иногда - до 5-6 лет.

Имматурные (ім) растения (рис. 1). Из почки перезимовавшего тубероида формируется побег, имеющий 2-3 низовых чешуевидных листа, иногда 1 низовой влагалищный лист, а также 2 фотосинтезирующих зеленых узколанценных листа полувзрослого типа. Эти листья отличаются от листьев ювенильных особей большими размерами. У 7 из 10 особей на листьях появляются фиолетово-коричневые пятна. Подземная часть растения состоит их двух тубероидов. Материнский тубероид одно- или двухлопастной, серого цвета, дочерний — двух- или трехлопастной, белого цвета, плотный, несущий почку возобновления. У растения образуются от 2 до 4 придаточных корней. Глубина погружения — до 6 см. Имматурное состояние продолжается обычно 1-3 года.

Виргинильные (v) растения (рис. 1). На побеге формируется 2-3 низовых чешуевидных листа, у некоторых особей – 1 низовой влагалищный лист, а также 3 фотосинтезирующих зеленых листа. Нижний лист обратнояйцевидный, взрослого типа, верхние — узколанцетные, полувзрослого типа. У всех особей на листьях есть фиолетово-коричневые пятна. Подземная часть растения состоит их двух тубероидов. Материнский тубероид одно-трехлопастной, серого цвета, дочерний — двух- трехлопастной, белого цвета, плотный, несущий почку возобновления. В основании побега образуются от 2 до 5 придаточных корней. Глубина погружения — до 6 см. В виргинильном состоянии растение находится 1-2 года, редко — более.

Генеративное (*g*) состояние подразделяется на 2 подгуппы с общей продолжительностью до 20 лет и более.

Молодые генеративные (*g*₁) растения (рис. 1). На побеге формируется 2-3 низовых чешуевидных листа, иногда — 1 низовой влагалищный, а также 3 фотосинтезирующих зеленых листа. Нижний лист обратнояйцевидный взрослого типа, а верхние — узколанцетные, полувзрослого типа. Верхние листья не достигают соцветия. У всех особей на листьях - фиолетово-коричневые пятна. Выше этих листьев стебель имеет еще 2-5 маленьких ланцетных листочка. Соцветие — короткоцилиндрический колос с 10-34 розово-лиловыми цветками. Плод — коробочка. Подземная часть растения состоит из двух тубероидов. Оба тубероида двух- четырехлопастные. Дочерний тубероид несет почку возобновления. У особи образуется от 4 до 8 придаточных корней. Глубина погружения — до 8 см.

2-3 низовых чешуевидных листа, иногда 1 или 2 низовых влагалищатакже 4 фотосинтезирующих зеленых листа. Два нижних листа общение взрослого типа, верхние — узколанцетные, полувзрослого тимах - фиолетово-коричневые пятна. Выше листьев стебель имеет еще мих ланцетных листочка. Соцветие — длинноцилиндрический колоситеми. Материнский тубероид четырех - пятилопастной, дочерний пестилопастной, несет почку возобновления. В основании побега общения - до 9 см.

году плодоносили, а в этом – нет (рис. 2). На материнском тубемогут существовать и g_1 и g_2 растения.

отосинтезирующими зелеными узколанцетными листьями. Матеверний тубероиды двухлопастные. Дочерний – несет почку возобвесновании побега формируется до 4 придаточных корней. Глубина
— до 3 см. Во втором случае (g₂) образуется побег с 2 низовыми чепистьями, 3 фотосинтезирующими зелеными листьями, похожими
ветинильных особей. Тубероидов два. Материнский тубероид четыдочерний — пятилопастной, несущий почку возобновления. В ос-

сенильных (s) растений имеет 2 низовых чешуевидных листа и 3 мощих зеленых листа, похожих на листья виргинильных особей, числом жилок (рис. 2). На листьях - фиолетово-коричневые пятна. Тубероид четырехлопастной, дочерний — значительно меньше ма-вальной формы, без лопастей, несет слаборазвитую почку возоб-веновании побега образуется до 5 придаточных корней. Глубина — 20 6 см. Сенильное состояние длится 1, реже 2-3 года.

онтогенеза происходят качественные изменения особи. Протоволючный образ жизни. У *j* особей появляется один узколанцетный
волючный и формируется два стеблекорневых тубероида с 1-2 ловолючный — два узколанцетных листа ювенильного типа, а тубе-

роиды с 2-3 лопастями. Для v особей характерно наличие трех листов, нижний лист обратнояйцевидный, верхние — узколанцетные, а также тубероидов с 2-3 лопастями. Увеличивается число придаточных корней. Побег растений g_I имеет три листа, отличающихся от листьев v особей только бо́льшими размерами, стебель, заканчивающийся короткоцилиндрическим соцветием; тубероиды с 2-4 лопастями. Побег растений в g_2 имеет четыре листа, два нижних — обратнояйцевидные, два верхних — узколанцетные; тубероиды с 4-6 лопастями и стебель, заканчивающийся длинноцилиндрическим соцветием. У особей в g_s два или три листа, похожие на листья имматурных и виргинильных растений; тубероиды с 2-5 лопастями. У растений в s состоянии — три листа, такие же, как и у виргинильных особей. Молодой тубероид намного меньше старого, недоразвит, не имеет лопастей и несет слаборазвитую почку возобновления.

Вахрамеева М.Г. Род пальчатокоренник // Биологическая флора Московской области. М., 2000. Вып. 14. С. 55-86.

Красная книга Брянской области, Т. 2, Растения. Брянск, 2004. 272 с. Красная книга Московской области. М., 1998. 560 с. Червона книга України. Рослинний світ. Київ, 1996. 608 с.

СОСТОЯНИЕ ПОПУЛЯЦИЙ БАШМАЧКА НАСТОЯЩЕГО В БРЯНСКОЙ ОБЛАСТИ

Е. Л. ЖЕЛЕЗНАЯ 1 , О. И. ЕВСТИГНЕЕВ 2

¹ Государственный биологический музей им. К. А. Тимирязева ² Государственный природный биосферный заповедник «Брянский лес»

Башмачок настоящий (*Cypripedium calceolus* L.) – одно из первых охраняемых растений в мире. Первоначальная основа для охраны редких видов растений – это оценка состояния их популяций. Знание состояния популяций необходимо для прогнозов их развития и разработки форм охраны. В связи с этим в статье по-